DESCRIPTION OF PARTICLE MIXING IN A BOILING LAYER
BY A HYPERBOLIC EQUATION

V. A. Borodulya, Yu. S. Teplitskii, UDC 66.096.5
and I. I. Yanovich

It is shown that the horizontal diffusion coefficients of particles, which are found
from the experimental response functions obtained using the parabolic and hyperbolie
diffusion equations, are nearly identical.

It is known that the hyperbolic diffusion equation describes the nonstationary processes
of particle mixing ina quasifluidized layer better than the classical (parabolic) equation
[1]. 1If one takes into account the sufficiently large number of experimental data in the
literature on the effective particle diffusion coefficients, found using the classical dif-
fusion equation (see, e.g., [2, 3]), a question arises whether these coefficients can be
used in the calculation of the nonstationary concentration and temperature fields from the
hyperbolic equation.

Petrik and Taganov [4], in the analysis of experimental data on the vertical mixing of
solid phase using parabolic and hyperbolic equations, obtained an unexpected and somewhat
surprising result: The diffusion coefficients obtained using the hyperbolic equation con-
siderably exceeded the corresponding diffusion coefficients found from the classical diffu-
sion equation (e.g., in a free layer by a factor of 4, and in a retarded layer by a factor
of 20-40!). This is even more surprising if we note that the diffusion coefficients deter-
mined in nonstationary conditions from the parabolic equation agree, as a rule, with the dif-
fusion coefficients found from experiments according to standard methods [3, 5]. The reason
for this substantial divergence of the coefficients determined in [4] from different models
is possibly the neglect of circulation components of the particle velocities which lead to
the "Taylor" diffusion, or in the incorrect form of the diffusion current of labeled impuri-
ties in the hyperbolic equation[J. = —D(3c/3x) instead of correct J. = —D(dc/d3x) — t*(3Jc/31)]

In the present problem we aim to study the applicability of using the effective horizon-
tal diffusion coefficient of particles, obtained from the parabolic equation, for the descrip-
tion of nonstationary tranmsport processes in structured boiling layers using the hyperbolic
equation.

Borodulya et al. [6] studied the effective horizontal diffusion coefficients of parti-
cles (Def) in a layer retarded by a tube bundle. The experimental mixing curve was compared
with the theoretical one:
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which is the solution of the parabolic diffusion equation of heated particles (heat conduc-
tion -.equation),* with the corresponding boundary conditions
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*Noting the large difference between the volume heat capacities of the gas and particles,
one can assume that all the heat in the system is transported by the heated moving particles.
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The quantities Dgf were found from the condition for coincidence of the maxima of the ex-
perimental and calculated [Eq. (1)] curves.

The hyperbolic equation for the thermal horizontal particle diffusion with boundary con-
ditions corresponding to (2) has the form
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To solve (3) and (4) we introduce a new function T by 8 = exp(—PeFo)T. It is not difficult
to show that the system (3), (4) reduces to a system of equations for T:
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. The new dimensionless complexes can be expressed as follows: Fo* = Fo*/(l — PeFo*)?,
Fo = Fo/(1 — PeFo%*), Jp = J exp(PeFo) (1 — PeFo*). The solution of the system (5), (6) can
be obtained by the following method. Teplitskii [7] studied the circulation model of the
vertical mixing of particles of Van Deemter [8]:
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The solution of (7), (8) was obtained in the form [7]
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Eliminating in turn c; and c, from (7), we obtain for the average concentration cs =
c = (ACl + BC2)/(A -+ B)
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It is seen from Eq. (10) that the system (7) is a generalization of the hyperbolic diffusion
equation of the form (5) if one postulates different velocities of the incident and reflected
waves (u; and uz, respectively). Substituting u, = u, into (10) and introducing the nota-
tion AB/B(A + B) = t*, u®/B(A + B) = Dgf we obtain a hyperbolic diffusion equation in the
usual form:
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Using the equality Au; = Bu, = u, the boundary conditions in (8) give the absence of current
of the labeled impurity in the cross sections x = 0 and x = H. Equation (11) (or the equiv-
alent Eq. (12)) with boundary conditions (8) corresvponds, except for the notation, to the
system (5), (6) whose solution can therefore be obtained from (9) by putting here A = B,
u?/B(A + B) = DEg/ (1 — B*t*), AB/B(A + B) = T*/(1 — B¥1¥),

The solution of the hyperbolic equation (5) with the boundary conditions {6) which is
thus found has the form
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Finally, the solution of the problem (3), (4) is
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It is not difficult to show that for Fo* = 0 (and accordingly Fo = Fo, Fo* = 0) Eq. (14)
reduces to the solution of the parabolic diffusion equation (2), i.e., to formula (1).

We estimate the term PeFo* = B*1* in the expressions for Fo and Fo*. Borodulya et al.
[6] found B* experimentally, using the theory of regular regime. The values of this quantity
were found to lie in the range B* = 0.002-0.009 1l/sec; in retarded layers, T* = 0.2-5 sec
([11, p. 172). Thus B*t* varies within the limits 0.0004-0.05 and it is permissible to put
Fo* = Fo*, Fo = Fo in (14).

The experimental curves of the thermal horizontal particle diffusion obtained in [6]
were compared with the results obtained on a computer according to (14) (Fig. 1). The con-
dition of the best fit, which was measured by the sum of squares of the deviations of the
calculated points from the experimental omnes, gave the required values of Dgf and 1* = Di¢/w?
(in Fig. 1la, D¥s = 12 cm®/sec, and 1% = 5.3 sec). The velocity of the incident and reflected
waves (w) was determined from the retardation time (t,) of thé experimental response function
(see Figs. 1 and 2; the experimental functions in Figs. la and 2 are identical): w = (y —
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Fig. 1. The comparison of the experi-
mental response functions with those
calculated from the hyperbolic equation.
a) (u/ep) — uo = 144 cm/sec; w = 1.5 cm/
sec; B* = 0.0075 1/sec; & = 0.85; Dif =
12.0 cm?/secy t* = 5.3 sec; At = 4h/w.
Curve 1: D = 28.4 cm®/sec, 2: D = 14,2
cm?/sec, 3: D = 12.0 cm?®/sec, 5: D =
7.1 ecm®/sec. Curve 4 is the experimental
function. b) (u/ep) — Uo = 60 cm/sec;

w = 1.15 cm/sec; B% = 0.0039 1/sec; ¢ =
0.90; t* = 5,6 secy; AT = 3.33 hf/w. Curve
1: D% = 7.4 cm®/sec; curve 2 is the ex-
perimental function. The quantity 1 is
in seconds.
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Fig. 2. The comparison of the experimental re-
sponse function with the one calculated from
the parabolic equation: (u/ep) — uo = 144 cm/
sec; w= 1.5 cm/sec; B* = 0.0075 1/sec; € =
0.85; Def = 14.2 cm?®/sec. Curve 1l: D = 28.4
em?/sec; 2: D = 14.2 em®/sec; 3: D = 7.1
cm?/sec. Curve 4 is the experimental function.

h)/ty, where y is the coordinate of the point where the temperature was measured. For com-
parison, Fig. 2 shows the results of calculation of the response function using the solution
of the parabolic diffusion equation (1). The maxima of curve 2 and of the experimental re-
sponse function 4 coincide. As we noted above, this condition determines the required dif-
fusion coefficient Dgf from the parabolic model (in Fig. 2, Def = 14.2 cm®/sec).” It is seen
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that the hyperbolic diffusion equation describes the experimental dependences (Fig. 1) con-
siderably better than the parabolic equation (Fig. 2). For the concrete experiment (Figs. la
and 2) the diffusion coefficient determined from the hyperbolic equation (D% f) is close to
the diffusion coefficient found from the parabolic equation (Bgf). In an analogous fashion
we analyzed all experimental curves of thermal diffusion obtalned in [6]. The results are
shown in Fig. 3. They indicate that the coefficients Def and DX af are nearly identical.

Thus, although the problem of applicability of diffusion coefficients obtained from the
parabolic equation for the calculation of temperature and concentration profiles using the
hyperbolic equation requires a further study, the presented results indicate that this is
possible, at least within the limits of the experimental range studied in the present work.

NOTATION

A, volume fractionof the layer taken up by the descending continuous phase: Ap, number introduced
in (9); B, volume fraction of the layer taken up by the ascending continuous phase (relative volume of
bubble tralls), c1, Cz, mass of the labeled substance per unit volume of the descending con-
tinuous phase, and of the hydrodynamic bubble trails, respectively; c = cs = (Ac; + Bea)/(A+
B); I'y, Dy (1 =1, 2, 3), coefficients in (9); Def, horizontal particle diffusion coefficient
(the coefficient of horizontal thermal diffusivity of the layer) found from the parabolic
equation (2); Dif, horizontal diffusion coefficient found from the hyperbolic equation (3);
D¢ = u?®/B(A + B), axial "Taylor'" diffusion coefficient defined in (10); H, height of the
layer; h, width of the initial rectangular pulse; J, dimensionless heat flux* 1, width of the
layer; R = h/H, vertical miscibility; R = h/Z, horlzontal miscibility; t, to, to, tempera-
ture of the Iayer, initial temperature, and temperature of the heating chamber, respec-
tively; u, up, filtration and initial fluidization velocities, respectively; u,;, velocity of
the descending continuous phase; u,, velocity of the bubble trail; Au, = Buz = u, circulation
velocity of the particles taking into account the total cross section of the apparatus; w,
wave velocity; x, y, vertical and horizontal coordinates; B* characterizes the intensity of
the heat dissipation from the layer; B, volume of the solid particles and of the gas between
them exchanged per unit time per unit volume of the layer between the descending continuous
phase and the bubble trail; e,, fraction of volume of the layer not taken up in packing;
n=x/H; 6= (t “‘to)/(tc —to); £=y/l; 0 = Bt; .T, time; 1%, relaxation time; tT,, retardation
time; Fo = Dgf1/1* (for the parabollc equatlon) Fo==Dng/Z2 (for the hyperbolic equation);
Fo = pZ¢1/H*; Fo* =D ofT*/1%; Fox = D&er* [H?; Fo/fl - PeFo*) Fo* = Fo*/(1 — PeFo*)?;

Pe* = u/BH Pe = B*1? /Def \for the parabolic equatlon) = B*ZZ/D:f (for the hyperbolic
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PARTICLE VELOCITY DISTRIBUTION IN THE FLOW OF AQUEOUS
POLYETHYLENE SOLUTIONS IN A CIRCULAR PIPE

A. I. Zhernovoi, Yu. F. Ivanyuta, UDC 532.529.5
and I. I. Takhistova

A distribution of longitudinal velocity, averaged over the cross section in the
turbulent flow of water and aqueous solutions of polyethylene in thin pipes, is
obtained on a nuclear magnetic resonance unit.

A distribution function for longitudinal velocity pulsations was obtained in [1] in the
turbulent flow of water and aqueous solutions of polyethylene in a pipe. Unfortunately, the
experiment was not sensitive to the sign of the pulsations, and the function obtained was
averaged relative to positive and negative pulsatioms.

For a new experiment, we used the same nuclear magnetic resonance (NMR) unit as in [1],
with slight differences (Fig. 1). The liquid flowing through the pipe, 700 mm long with a
6.0mm inside diameter (1), was magnetized positively by polarizer 2. By means of the IMI-2
magnetic induction meter, we used detector 3 to record an NMR signal of an intensity propor-
tional to the magnetization M of a wunit volume of the flowing liquid. The change in the
NMR signal over time was photographed from the screen of an S8-7A memorizing oscillograph.
The nutation coil 5 was powered by a G4-26 generator. The liquid was pumped from a 50-liter
container by pump 6. The pump was located outside of the pipe to avoid degradation of the
polyethylene solution.

Particles of the liquid were marked by the nutation coil, which created a weak variable
magnetic field directed perpendicular to the vector of the external magnetic field in the
coil. The G4-26 generator created a variable electrical field with a frequency of 100 kHz —
equal to the nucleus precession frequency — and a power corresponding to a 180° rotation of

G4~26 IMI-2 S8-TA

I A
5

L |
!

Fig. 1. Block diagram of experimental unit for
obtaining a particle velocity distribution func-
tion in liquid flow in a pipe.
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